Open menu

Jock River Ashton to Dwyer Hill

Jock River Ashton to Dwyer Hill

4.0 Jock River-Ashton Dwyer Hill Catchment: Land Cover

Land cover and any change in coverage that has occurred over a six year period is summarized for the Ashton-Dwyer Hill catchment using spatially continuous vector data representing the catchment during the spring of 2008 and 2014. This dataset was developed by the RVCA through heads-up digitization of 20cm DRAPE ortho-imagery at a 1:4000 scale and details the surrounding landscape using 10 land cover classes.

4.1 Ashton-Dwyer Hill Catchment Land Cover Change

As shown in Table 8 and Figure 1, the dominant land cover type in 2014 was crop and pastureland followed by woodland and wetland.

Table 8 Land cover (2008 vs. 2014) in the Ashton-Dwyer Hill catchment
Land Cover20082014Change - 2008 to 2014
AreaAreaArea
HaPercentHaPercentHaPercent
Crop & Pasture315239314739-5
Woodland *182923179522-34-1
Wetland **177422171321-61-1
>Evaluated(864)(11)(817)(10)(-47)(-1)
>Unevaluated(910)(11)(896)(11)(-14)(0)
Settlement65987149551
Meadow-Thicket37353534-20-1
Transportation2263282356
Aggregate39<148<19
Water35<135<1
* Does not include treed swamps ** Includes treed swamps

From 2008 to 2014, there was an overall change of 199 hectares (from one land cover class to another). Most of the change in the Ashton-Dwyer Hill catchment is a result of the conversion of crop and pastureland and wetland to settlement, wetland and settlement to transportation along with the conversion of woodland to crop and pastureland (Figure 52).

Figure xx Land cover change in the Ashton-Dwyer Hill catchment (2014)
Figure 52 Land cover change in the Ashton-Dwyer Hill catchment (2014)

Table 9 provides a detailed breakdown of all land cover change that has taken place in the Ashton-Dwyer Hill catchment between 2008 and 2014.

 
Table 9 Land cover change in the Ashton-Dwyer Hill catchment (2008 to 2014)
Land CoverChange - 2008 to 2014
Area
Ha.Percent
Wooded Area to Crop and Pasture28.514.3
Crop and Pasture to Settlement27.213.6
Unevaluated Wetland to Settlement2412
Evaluated Wetland to Transportation23.211.6
Settlement to Transportation14.67.3
Site Development/Preparation to Settlement12.36.1
Wooded Area to Settlement8.84.4
Meadow-Thicket to Transportation8.44.2
Crop and Pasture to Transportation8.44.2
Crop and Pasture to Wooded Area6.53.2
Meadow-Thicket to Crop and Pasture63
Unevaluated Wetland to Crop and Pasture5.12.6
Wooded Area to Aggregate4.72.3
Meadow-Thicket to Settlement4.42.2
Transportation to Settlement42
Unevaluated Wetland to Transportation3.61.8
Unevaluated Wetland to Settlement3.31.7
Unevaluated Wetland to Aggregate21
Meadow-Thicket to Aggregate1.90.9
Wooded Area to Unevaluated Wetland0.90.5
Transportation to Crop and Pasture0.50.3
Wooded Area to Transportation0.40.2
Unevaluated Wetland to Meadow-Thicket0.40.2
Settlement to Crop and Pasture0.30.2

4.2 Woodland Cover

In the Environment Canada Guideline (Third Edition) entitled “How Much Habitat Is Enough?” (hereafter referred to as the “Guideline”) the opening narrative under the Forest Habitat Guidelines section states that prior to European settlement, forest was the predominant habitat in the Mixedwood Plains ecozone. The remnants of this once vast forest now exist in a fragmented state in many areas (including the Rideau Valley watershed) with woodland patches of various sizes distributed across the settled landscape along with higher levels of forest cover associated with features such as the Frontenac Axis (within the on-Shield areas of the Rideau Lakes and Tay River subwatersheds). The forest legacy, in terms of the many types of wildlife species found, overall species richness, ecological functions provided and ecosystem complexity is still evident in the patches and regional forest matrices (found in the Jock River subwatershed and elsewhere in the Rideau Valley watershed). These ecological features are in addition to other influences which forests have on water quality and stream hydrology including reducing soil erosion, producing oxygen, storing carbon along with many other ecological services that are essential not only for wildlife but for human well-being.

The Guideline also notes that forests provide a great many habitat niches that are in turn occupied by a great diversity of plant and animal species. They provide food, water and shelter for these species - whether they are breeding and resident locally or using forest cover to help them move across the landscape. This diversity of species includes many that are considered to be species at risk. Furthermore, from a wildlife perspective, there is increasing evidence that the total forest cover in a given area is a major predictor of the persistence and size of bird populations, and it is possible or perhaps likely that this pattern extends to other flora and fauna groups. The overall effect of a decrease in forest cover on birds in fragmented landscapes is that certain species disappear and many of the remaining ones become rare, or fail to reproduce, while species adapted to more open and successional habitats, as well as those that are more tolerant to human-induced disturbances in general, are able to persist and in some cases thrive. Species with specialized-habitat requirements are most likely to be adversely affected. The overall pattern of distribution of forest cover, the shape, area and juxtaposition of remaining forest patches and the quality of forest cover also play major roles in determining how valuable forests will be to wildlife and people alike.

The current science generally supports minimum forest habitat requirements between 30 and 50 percent, with some limited evidence that the upper limit may be even higher, depending on the organism/species phenomenon under investigation or land-use/resource management planning regime being considered/used.

As shown in Figure 53, 25 percent of the Ashton-Dwyer Hill catchment contains 1795 hectares of upland forest and 224 hectares of lowland forest (treed swamps) versus the 26 percent of woodland cover in the Jock River subwatershed. This is less than the 30 percent of forest cover that is identified as the minimum threshold required to sustain forest birds according to the Guideline and which may only support less than one half of potential species richness and marginally healthy aquatic systems. When forest cover drops below 30 percent, forest birds tend to disappear as breeders across the landscape.

Figure xx Woodland cover and forest interior (2014)
Figure 53 Woodland cover and forest interior (2014)

4.2.1 Woodland (Patch) Size

According to the Ministry of Natural Resources’ Natural Heritage Reference Manual (Second Edition), larger woodlands are more likely to contain a greater diversity of plant and animal species and communities than smaller woodlands and have a greater relative importance for mobile animal species such as forest birds.

Bigger forests often provide a different type of habitat. Many forest birds breed far more successfully in larger forests than they do in smaller woodlots and some rely heavily on forest interior conditions. Populations are often healthier in regions with more forest cover and where forest fragments are grouped closely together or connected by corridors of natural habitat. Small forests support small numbers of wildlife. Some species are “area-sensitive” and tend not to inhabit small woodlands, regardless of forest interior conditions. Fragmented habitat also isolates local populations, especially small mammals, amphibians and reptiles with limited mobility. This reduces the healthy mixing of genetic traits that helps populations survive over the long run (Conserving the Forest Interior. Ontario Extension Notes, 2000).

The Environment Canada Guideline also notes that for forest plants that do not disperse broadly or quickly, preservation of some relatively undisturbed large forest patches is needed to sustain them because of their restricted dispersal abilities and specialized habitat requirements and to ensure continued seed or propagation sources for restored or regenerating areas nearby.

The Natural Heritage Reference Manual continues by stating that a larger size also allows woodlands to support more resilient nutrient cycles and food webs and to be big enough to permit different and important successional stages to co-exist. Small, isolated woodlands are more susceptible to the effects of blowdown, drought, disease, insect infestations, and invasions by predators and non-indigenous plants. It is also known that the viability of woodland wildlife depends not only on the characteristics of the woodland in which they reside, but also on the characteristics of the surrounding landscape where the woodland is situated. Additionally, the percentage of forest cover in the surrounding landscape, the presence of ecological barriers such as roads, the ability of various species to cross the matrix surrounding the woodland and the proximity of adjacent habitats interact with woodland size in influencing the species assemblage within a woodland.

In the Ashton-Dwyer Hill catchment (in 2014), 191 (54 percent) of the 356 woodland patches are very small, being less than one hectare in size. Another 137 (38 percent) of the woodland patches ranging from one to less than 20 hectares in size tend to be dominated by edge-tolerant bird species. The remaining 28 (8 percent of) woodland patches range between 21 and 181 hectares in size. Twenty-seven of these patches contain woodland between 20 and 100 hectares and may support a few area-sensitive species and some edge intolerant species, but will be dominated by edge tolerant species. Conversely, one (less than one percent) of the 356 woodland patches in the drainage area exceeds the 100 plus hectare size needed to support most forest dependent, area sensitive birds and are large enough to support approximately 60 percent of edge-intolerant species. No patch tops 200 hectares, which according to the Environment Canada Guideline will support 80 percent of edge-intolerant forest bird species (including most area sensitive species) that prefer interior forest habitat conditions.

Table 10 presents a comparison of woodland patch size in 2008 and 2014 along with any changes that have occurred over that time. A decrease (of 35 ha) has been observed in the overall woodland patch area between the two reporting periods with most change occurring in the 20 to 50 and 50 to 100 hectare woodland patch size class ranges.

Table 10 Woodland patches in the Ashton-Dwyer Hill catchment (2008 and 2014)
Woodland Patch Size Range (ha) Woodland* PatchesPatch Change
200820142008 to 2014
Number Area Number Area Number Area 
Count Percent  Ha Percent Count Percent  Ha Percent Count Ha 
Less than 1  1795279419154824123
1 to 20 14040648311373863231-3-16
20 to 50 1755502719559329243
50 to 100 93596298253026-1-66
100 to 2001<118091<118191
Totals3461002053100356100201810010-35
*Includes treed swamps

4.2.2 Woodland (Forest) Interior Habitat

The forest interior is habitat deep within woodlands. It is a sheltered, secluded environment away from the influence of forest edges and open habitats. Some people call it the “core” or the “heart” of a woodland. The presence of forest interior is a good sign of woodland health, and is directly related to the woodland’s size and shape. Large woodlands with round or square outlines have the greatest amount of forest interior. Small, narrow woodlands may have no forest interior conditions at all. Forest interior habitat is a remnant natural environment, reminiscent of the extensive, continuous forests of the past. This increasingly rare forest habitat is now a refuge for certain forest-dependent wildlife; they simply must have it to survive and thrive in a fragmented forest landscape (Conserving the Forest Interior. Ontario Extension Notes, 2000).

The Natural Heritage Reference Manual states that woodland interior habitat is usually defined as habitat more than 100 metres from the edge of the woodland and provides for relative seclusion from outside influences along with a moister, more sheltered and productive forest habitat for certain area sensitive species. Woodlands with interior habitat have centres that are more clearly buffered against the edge effects of agricultural activities or more harmful urban activities than those without.

In the Ashton-Dwyer Hill catchment (in 2014), the 356 woodland patches contain 76 forest interior patches (Figure 53) that occupy two percent (135 ha.) of the catchment land area (which is less than the five percent of interior forest in the Jock River Subwatershed). This is below the ten percent figure referred to in the Environment Canada Guideline that is considered to be the minimum threshold for supporting edge intolerant bird species and other forest dwelling species in the landscape.

Most patches (74) have less than 10 hectares of interior forest, 54 of which have small areas of interior forest habitat less than one hectare in size. Between 2008 and 2014, there has been a large change in the number of woodland patches containing interior habitat with an overall loss of six hectares in the catchment (Table 11), suggesting an increase in forest fragmentation over the six year period.

Table 11 Woodland Interior in the Ashton-Dwyer Hill catchment (2008 and 2014)
Woodland Interior Habitat Size Range (ha)Woodland InteriorInterior Change
200820142008 to 2014
NumberAreaNumberAreaNumberArea
CountPercentHaPercentCountPercent HaPercentCountHa
Less than 1 205132547186345
1 to 10164166472026695143
10 to 30252719111612-1-11
30 to 50134532114231-3
Totals391001411007610013510037-6

4.3 Wetland Cover

Wetlands are habitats forming the interface between aquatic and terrestrial systems. They are among the most productive and biologically diverse habitats on the planet. By the 1980s, according to the Natural Heritage Reference Manual, 68 percent of the original wetlands south of the Precambrian Shield in Ontario had been lost through encroachment, land clearance, drainage and filling.

Wetlands perform a number of important ecological and hydrological functions and provide an array of social and economic benefits that society values. Maintaining wetland cover in a watershed provides many ecological, economic, hydrological and social benefits that are listed in the Reference Manual and which may include:

  • contributing to the stabilization of shorelines and to the reduction of erosion damage through the mitigation of water flow and soil binding by plant roots
  • mitigating surface water flow by storing water during periods of peak flow (such as spring snowmelt and heavy rainfall events) and releasing water during periods of low flow (this mitigation of water flow also contributes to a reduction of flood damage)
  • contributing to an improved water quality through the trapping of sediments, the removal and/or retention of excess nutrients, the immobilization and/or degradation of contaminants and the removal of bacteria
  • providing renewable harvesting of timber, fuel wood, fish, wildlife and wild rice
  • contributing to a stable, long-term water supply in areas of groundwater recharge and discharge
  • providing a high diversity of habitats that support a wide variety of plants and animals
  • acting as “carbon sinks” making a significant contribution to carbon storage
  • providing opportunities for recreation, education, research and tourism

Historically, the overall wetland coverage within the Great Lakes basin exceeded 10 percent, but there was significant variability among watersheds and jurisdictions, as stated in the Environment Canada Guideline. In the Rideau Valley Watershed, it has been estimated that pre-settlement wetland cover averaged 35 percent using information provided by Ducks Unlimited Canada (2010) versus the 21 percent of wetland cover existing in 2014 derived from DRAPE imagery analysis.

Using the same dataset, it is estimated that pre-settlement (historic) wetland cover averaged 51 percent in the Jock River subwatershed versus the 24 percent of cover existing in 2014 (as summarized in Table 12).

Table 12 Wetland cover in the Jock River subwatershed and Ashton-Dwyer Hill catchment (Historic to 2014)
Wetland Cover Pre-settlement20082014Change - Historic to 2014
Area  Area  Area  Area  
Ha Percent Ha Percent Ha Percent Ha Percent 
Ashton-Dwyer Hill380847177422171321-2095-55
Jock River285275113282241323024-15297-54
Rideau Valley13411535------8207621-52039-39

 

This decline in wetland cover is also evident in the Ashton-Dwyer Hill catchment (as seen in Figure 54) where wetland was reported to cover 47 percent of the area prior to settlement, as compared to 21 percent in 2014. This represents a 55 percent loss of historic wetland cover. To maintain critical hydrological, ecological functions along with related recreational and economic benefits provided by these wetland habitats in the catchment, a “no net loss” of currently existing wetlands should be employed to ensure the continued provision of tangible benefits accruing from them to landowners and surrounding communities.

Figure xx  Ashton-Dwyer Hill catchment wetland cover
Figure 54  Ashton-Dwyer Hill catchment wetland cover

4.4 Shoreline Cover

The riparian or shoreline zone is that special area where the land meets the water. Well-vegetated shorelines are critically important in protecting water quality and creating healthy aquatic habitats, lakes and rivers. Natural shorelines intercept sediments and contaminants that could impact water quality conditions and harm fish habitat in streams. Well established buffers protect the banks against erosion, improve habitat for fish by shading and cooling the water and provide protection for birds and other wildlife that feed and rear young near water. A recommended target (from the Environment Canada Guideline) is to maintain a minimum 30 metre wide vegetated buffer along at least 75 percent of the length of both sides of rivers, creeks and streams.

Figure 55 shows the extent of the ‘Natural’ vegetated riparian zone (predominantly wetland/woodland features) and ‘Other’ anthropogenic cover (crop/pastureland, roads/railways, settlements) along a 30-metre-wide area of land, both sides of the shoreline of the Jock River and its tributaries in the Ashton-Dwyer Hill catchment.

Figure xx Natural and other riparian land cover in the Ashton-Dwyer Hill catchment
Figure 55 Natural and other riparian land cover in the Ashton-Dwyer Hill catchment

This analysis shows that the riparian zone in the Ashton-Dwyer Hill catchment in 2014 was comprised of wetland (36 percent), crop and pastureland (28 percent), woodland (18 percent), settlement (eight percent), transportation (seven percent), meadow-thicket (three percent) and aggregates (less than one percent). Additional statistics for the Ashton-Dwyer Hill catchment are presented in Table 13. Of particular interest is the observed increase in the area of “Transportation” and "Meadow-Thicket" and decrease in "Woodland", "Wetland" and "Crop and Pastureland" along the shoreline of the Jock River and tributaries over a six year period.

Table 13 Riparian land cover (2008 vs. 2014) in the Ashton-Dwyer Hill catchment
Riparian Land Cover20082014Change - 2008 to 2014
AreaAreaArea
Ha.Percent Ha.PercentHa.Percent
Wetland3163631136-5
> Unevaluated(162)(18)(155)(18)(-7)(0)
> Evaluated(154)(18)(156)(18)(2)(0)
Crop & Pasture2542924928-5-1
Woodland1621815518-7
Settlement65767821
Transportation5566277-1
Meadow-Thicket2533035
Aggregate3<13<1

5.0 Jock River-Ashton Dwyer Hill Catchment: Stewardship and Water Resources Protection

The RVCA and its partners are working to protect and enhance environmental conditions in the Jock River Subwatershed. Figure 56 shows the location of all stewardship projects completed in the Jock River-Ashton Dwyer Hill catchment along with sites identified for potential shoreline restoration.

5.1 Rural Clean Water Projects

From 2010 to 2015, three precision farming and two manure storage/wastewater runoff projects were completed along with one well upgrade, one milkhouse wastewater treatment facility, one windbreak planting and one fragile land retirement. Between 2004 and 2009, two livestock fencing and two crop residue projects were finished along with two septic system replacements, one well decommissioning, one well upgrade and one nutrient management plan. Prior to 2004, four crop residue and three livestock fencing projects, three precision farming, two milkhouse wastewater treatment facilities, one septic system replacement and one manure storage/wastewater runoff project were completed. Total value of all 32 projects is $506,613 with $91,900 of that amount funded through grant dollars from the RVCA.

Figure xx Stewardship and potential restoration locations
Figure 56 Stewardship site locations 
 

5.2 Private Land Forestry Projects

The location of RVCA tree planting projects is shown in Figure 56. From 2010 to 2015, 24,450 trees were planted at six sites. Between 2004 and 2009, 23,057 trees were planted at 10 sites and prior to 2004, 200,460 trees were  planted at 31 sites, In total, 245,967 trees were planted resulting in the reforestation of 123 hectares. Three of these projects were completed within the 30 metre riparian zone of the Jock River and its tributaries. Total project value of all 47 projects is $695,523 with $262,014 of that amount coming from fundraising sources.

Through the RVCA Butternut Recovery Program, an additional 70 butternut trees were planted in the Jock River-Ashton Dwyer Hill catchment (Figure 56) between 2004 and 2015, as part of efforts to introduce healthy seedlings from tolerant butternuts into various locations across Eastern Ontario.

5.3 Shoreline Naturalization Projects

With the assistance of the RVCA’s Shoreline Naturalization Program, 190 trees and shrubs were planted at a total project value of $1,582.

5.4 Ontario Drinking Water Stewardship Projects

Figure 56 shows the location of all Ontario Drinking Water Stewardship Program (ODWSP) projects in the Jock River-Ashton Dwyer Hill catchment. Between 2010 and 2015, two fuel handling and storage facilities and one septic system repair/replacement were completed. Total project value is $28,810 with $9,291 of that amount funded by the Ontario Ministry of the Environment.

5.5 Valley, Stream, Wetland and Hazard Lands

The Ashton-Dwyer Hill catchment covers 81 square kilometres with 17.3 square kilometres (or 21 percent) of the drainage area being within the regulation limit of Ontario Regulation 174/06 (Figure 57), giving protection to wetland areas and river or stream valleys that are affected by flooding and erosion hazards.

Wetlands occupy 17.1 sq. km. (or 21 percent) of the catchment. Of these wetlands, 8.3 sq. km (or 49 percent) are designated as provincially significant and included within the RVCA regulation limit. This leaves the remaining 8.8 sq. km (or 51 percent) of wetlands in the catchment outside the regulated area limit.

Of the 153.3 kilometres of stream in the catchment, regulation limit mapping has been plotted along 56.9 kilometers of streams (representing 37 percent of all streams in the catchment). Some of these regulated watercourses (30.1 km or 20 percent of all streams) flow through regulated wetlands; the remaining 26.8 km (or 47 percent) of regulated streams are located outside of those wetlands. Plotting of the regulation limit on the remaining 96.4 km (or 63 percent) of streams requires identification of flood and erosion hazards and valley systems.

Within those areas of the Ashton-Dwyer Hill catchment subject to the regulation (limit), efforts (have been made and) continue through RVCA planning and regulations input and review to manage the impact of development (and other land management practices) in areas where “natural hazards” are associated with rivers, streams, valley lands and wetlands. For areas beyond the regulation limit, protection of the catchment’s watercourses is only provided through the “alteration to waterways” provision of the regulation.

Figure xx RVCA regulation limits
Figure 57 RVCA regulation limits

5.6 Vulnerable Drinking Water Areas

A portion of the Wellhead Protection Area around the Munster municipal drinking water source is located within the Jock River-Ashton Dwyer Hill drainage catchment. This area is subject to mandatory policies in the Mississippi-Rideau Source Protection Plan developed under the Clean Water Act. These policies specifically regulate land uses and activities that are considered drinking water threats, thereby reducing the risk of contamination of the municipal drinking water source.

The Jock River-Ashton Dwyer Hill drainage catchment is also considered to have a Highly Vulnerable Aquifer. This means that the nature of the overburden (thin soils, fractured bedrock) does not provide a high level of protection for the underlying groundwater making the aquifer more vulnerable to contaminants released on the surface. The Mississippi-Rideau Source Protection Plan includes policies that focus on the protection of groundwater region-wide due to the fact that most of the region, which encompasses the Mississippi and Rideau watersheds, is considered Highly Vulnerable Aquifer.

For detailed maps and policies that have been developed to protect drinking water sources, please go to the Mississippi-Rideau Source Protection Region website at www.mrsourcewater.ca to view the Mississippi-Rideau Source Protection Plan.

6.0 Jock River-Ashton Dwyer Hill Catchment: Challenges/Issues

Water Quality/Quantity

Surface chemistry water quality on the Jock River in the catchment declines from “Fair” to “Poor” between the upstream (JR-45) and downstream sites (JR-20). The scores at both sites are largely influenced by frequent high nutrient concentrations and periods of bacterial pollution

Instream biological water quality conditions at the Jock River Ashton-Dwyer Hill sample location aquatic habitat conditions from a benthic invertebrate perspective is considered “Poor” from 2011 to 2015 as the samples are dominated by species that are moderately sensitive and tolerant to high organic pollution levels

Existing hydrological and geochemical datasets and assessments (academic, RVCA, others) are only recently available and/or are not being considered in the characterization of the numerous hydrologic functions of the Jock River subwatershed. Further, there is a dearth of hydrologic information (hydroperiod, groundwater/surface water interactions, geochemistry) about the wetlands that remain in the Jock River subwatershed

Headwaters/Instream/Shorelines

‘Natural’ vegetation covers 57 percent of the riparian zone of the Jock River and its tributaries (Figure 55) and is below the recommended 30 metre wide, naturally vegetated target along 75 percent of the length of the catchment’s watercourses

Land Cover

Woodlands cover 25 percent of the catchment and is less than the 30 percent of forest cover that is identified as the minimum threshold for sustaining forest birds and other woodland dependent species (Figure 53)

Pre-settlement wetlands have declined by 55 percent and now cover 21 percent (1713 ha.) of the catchment (Figure 54). Fifty-two percent (896 ha.) of these wetlands remain unevaluated/unregulated and are vulnerable to drainage and land clearing activities in the absence of any regulatory and planning controls that would otherwise protect them for the many important hydrological, social, biological and ecological functions/services/values they provide to landowners and the surrounding community

7.0 Jock River-Ashton Dwyer Hill Catchment: Opportunities/Actions

Water Quality/Quantity

Investigate the impact of inflow from the Jenkinson drain to water quality conditions on the Jock River at site (JR-20)

Focus water quality improvements at elevated nutrient and E. coli counts via non-point and point source pollution control using best management practices such as shoreline zone enhancement and protection of natural cover

Landowners should consider taking advantage of the Rural Clean Water Programs which offer grants to landowners interested in implementing projects on their property that will help to protect and improve water quality:

  • Homeowners may be interested in projects to repair, replace or upgrade their well or septic system, or addressing erosion through buffer plantings and erosion control
  • Farmers can take advantage of a wide range of projects, including livestock fencing, manure storage, tile drainage control structures, cover crops, and many more

Continue to coordinate environmental monitoring and reporting activities with the City of Ottawa

Use wetland restoration as a tool to improve surface water quality and help restore the hydrologic integrity of the Jock River and its tributaries

List, share and when possible, synthesize and use existing hydrological and geochemical datasets and assessment outcomes to facilitate the characterization of subwatershed and catchment hydrological functions. In addition, prepare guidance on best practices for the preparation of water budget assessments to better understand the hydrologic cycle requirements that occur at site specific scales; and share existing catchment and subwatershed scale water budget assessment outcomes

Headwaters/Instream/Shorelines

Promote the Rideau Valley Shoreline Naturalization Program to landowners to increase existing 57 percent of natural shoreline cover

Educate landowners about the value of and best management practices used to maintain and enhance natural shorelines and headwater drainage features

Work with the Township of Beckwith and City of Ottawa to consistently implement current land use planning and development policies for water quality and shoreline protection (i.e., adherence to a minimum 30 metre development setback from water) adjacent to the Jock River and other catchment streams

Target shoreline restoration at sites identified in this report (shown as “Other riparian land cover” in Figure 55 and “Potential Riparian/Instream Restoration” in Figures 42/43) and explore other restoration and enhancement opportunities along the Jock River and its tributaries

Land Cover

Promote the City of Ottawa Green Acres Reforestation Program and the Rideau Valley Trees for Tomorrow Program to landowners to increase existing 25 percent of woodland cover

Encourage the Township of Beckwith and City of Ottawa to strengthen natural heritage policies in official plans and zoning by-laws where shoreline, wetland, woodland cover and watercourse setbacks are determined to be at or below critical ecological thresholds. Information for this purpose is provided in the RVCA’s subwatershed and catchment reports

Explore ways and means to more effectively enforce and implement conditions of land-use planning and development approvals to achieve net environmental gains

Re-consider the RVCA’s approach to wetland regulation where there is an identified hydrologic imperative to do so (i.e., significant loss of historic wetland cover (see Figure 54) and/or seasonal, critically low baseflows in the Jock River and/or areas of seasonal flooding)

Full Catchment Report