Open menu

Jock River Richmond

Jock River Richmond

4.0 Jock River-Richmond Catchment: Land Cover

Land cover and any change in coverage that has occurred over a six-year period is summarized for the Jock River-Richmond catchment using spatially continuous vector data representing the catchment during the spring of 2008 and 2014. This dataset was developed by the RVCA through heads-up digitization of 20cm DRAPE ortho-imagery at a 1:4000 scale and details the surrounding landscape using 10 land cover classes.

4.1 Richmond Catchment Change

As shown in Table 8 and Figure 1, the dominant land cover type in 2014 was crop and pastureland.

Table 8 Land cover (2008 vs. 2014) in the Richmond catchment
Land Cover20082014Change - 2008 to 2014
AreaAreaArea
HaPercentHaPercentHaPercent
Crop & Pasture141545147847632
Woodland *5471750516-42-1
Wetland **4891547715-12-1
>Evaluated(286)(9)(286)(9)(0)(0)
>Unevaluated(203)(6)(191)(6)(-12)(0)
Settlement4001342414241
Transportatiojn149515758
Meadow-Thicket1083662-42-1
Water341341
* Does not include treed swamps ** Includes treed swamps

From 2008 to 2014, there was an overall change of 134 hectares (from one land cover class to another). Most of the change in the Richmond catchment is a result of the conversion of wetland and woodland and areas of meadow-thicket to crop and pastureland (Figure 63).

Figure xx Land cover change in the Richmond catchment
Figure 63 Land cover change in the Richmond catchment

Table 9 provides a detailed breakdown of all land cover change that has taken place in the Richmond catchment between 2008 and 2014.

Table 9 Land cover change in the Richmond catchment (2008 to 2014)
Land CoverChange - 2008 to 2014
Area
Ha.Percent
Meadow-Thicket to Crop and Pasture42.931.9
Wooded Area to Crop and Pasture31.123.2
Crop and Pasture to Settlement19.014.2
Unevaluated Wetland to Crop and Pasture15.811.8
Wooded Area to Settlement7.05.2
Crop and Pasture to Transportation5.94.4
Site Development/Preparation to Settlement5.13.8
Wooded Area to Unevaluated Wetland3.62.7
Settlement to Transportation1.81.3
Crop and Pasture to Meadow-Thicket1.10.9
Wooded Area to Transportation0.50.4
Meadow-Thicket to Settlement0.30.2
 

4.2 Woodland Cover

In the Environment Canada Guideline (Third Edition) entitled “How Much Habitat Is Enough?” (hereafter referred to as the “Guideline”) the opening narrative under the Forest Habitat Guidelines section states that prior to European settlement, forest was the predominant habitat in the Mixedwood Plains ecozone. The remnants of this once vast forest now exist in a fragmented state in many areas (including the Rideau Valley watershed) with woodland patches of various sizes distributed across the settled landscape along with higher levels of forest cover associated with features such as the Frontenac Axis (within the on-Shield areas of the Rideau Lakes and Tay River subwatersheds). The forest legacy, in terms of the many types of wildlife species found, overall species richness, ecological functions provided and ecosystem complexity is still evident in the patches and regional forest matrices (found in the Jock River subwatershed and elsewhere in the Rideau Valley watershed). These ecological features are in addition to other influences which forests have on water quality and stream hydrology including reducing soil erosion, producing oxygen, storing carbon along with many other ecological services that are essential not only for wildlife but for human well-being.

The Guideline also notes that forests provide a great many habitat niches that are in turn occupied by a great diversity of plant and animal species. They provide food, water and shelter for these species - whether they are breeding and resident locally or using forest cover to help them move across the landscape. This diversity of species includes many that are considered to be species at risk. Furthermore, from a wildlife perspective, there is increasing evidence that the total forest cover in a given area is a major predictor of the persistence and size of bird populations, and it is possible or perhaps likely that this pattern extends to other flora and fauna groups. The overall effect of a decrease in forest cover on birds in fragmented landscapes is that certain species disappear and many of the remaining ones become rare, or fail to reproduce, while species adapted to more open and successional habitats, as well as those that are more tolerant to human-induced disturbances in general, are able to persist and in some cases thrive. Species with specialized-habitat requirements are most likely to be adversely affected. The overall pattern of distribution of forest cover, the shape, area and juxtaposition of remaining forest patches and the quality of forest cover also play major roles in determining how valuable forests will be to wildlife and people alike.

The current science generally supports minimum forest habitat requirements between 30 and 50 percent, with some limited evidence that the upper limit may be even higher, depending on the organism/species phenomenon under investigation or land-use/resource management planning regime being considered/used.

As shown in Figure 64, 17 percent of the Richmond catchment contains 505 hectares of upland forest and 46 hectares of lowland forest (treed swamps) versus the 26 percent of woodland cover in the Jock River subwatershed. This is less than the 30 percent of forest cover that is identified as the minimum threshold required to sustain forest birds according to the Guideline and which may only support less than one half of potential species richness and marginally healthy aquatic systems. When forest cover drops below 30 percent, forest birds tend to disappear as breeders across the landscape.

Figure xx Woodland cover and forest interior (2014)
Figure 64 Woodland cover and forest interior (2014)

4.2.1 Woodland (Patch) Size

According to the Ministry of Natural Resources’ Natural Heritage Reference Manual (Second Edition), larger woodlands are more likely to contain a greater diversity of plant and animal species and communities than smaller woodlands and have a greater relative importance for mobile animal species such as forest birds.

Bigger forests often provide a different type of habitat. Many forest birds breed far more successfully in larger forests than they do in smaller woodlots and some rely heavily on forest interior conditions. Populations are often healthier in regions with more forest cover and where forest fragments are grouped closely together or connected by corridors of natural habitat. Small forests support small numbers of wildlife. Some species are “area-sensitive” and tend not to inhabit small woodlands, regardless of forest interior conditions. Fragmented habitat also isolates local populations, especially small mammals, amphibians and reptiles with limited mobility. This reduces the healthy mixing of genetic traits that helps populations survive over the long run (Conserving the Forest Interior. Ontario Extension Notes, 2000).

The Environment Canada Guideline also notes that for forest plants that do not disperse broadly or quickly, preservation of some relatively undisturbed large forest patches is needed to sustain them because of their restricted dispersal abilities and specialized habitat requirements and to ensure continued seed or propagation sources for restored or regenerating areas nearby.

The Natural Heritage Reference Manual continues by stating that a larger size also allows woodlands to support more resilient nutrient cycles and food webs and to be big enough to permit different and important successional stages to co-exist. Small, isolated woodlands are more susceptible to the effects of blowdown, drought, disease, insect infestations, and invasions by predators and non-indigenous plants. It is also known that the viability of woodland wildlife depends not only on the characteristics of the woodland in which they reside, but also on the characteristics of the surrounding landscape where the woodland is situated. Additionally, the percentage of forest cover in the surrounding landscape, the presence of ecological barriers such as roads, the ability of various species to cross the matrix surrounding the woodland and the proximity of adjacent habitats interact with woodland size in influencing the species assemblage within a woodland.

In the Richmond catchment (in 2014), sixty-four (54 percent) of the 119 woodland patches are very small, being less than one hectare in size. Another 50 (42 percent) of the woodland patches ranging from one to less than 20 hectares in size tend to be dominated by edge-tolerant bird species. The remaining five (four percent of) woodland patches range between 22 and 86 hectares in size. and may support a few area-sensitive species and some edge intolerant species, but will be dominated by edge tolerant species. No patch exceeds the 100 plus hectare size needed to support most forest dependent, area sensitive birds and which are large enough to support approximately 60 percent of edge-intolerant species. No patch tops 200 hectares, which according to the Environment Canada Guideline will support 80 percent of edge-intolerant forest bird species (including most area sensitive species) that prefer interior forest habitat conditions.

Table 10 presents a comparison of woodland patch size in 2008 and 2014 along with any changes that have occurred over that time. A decrease (of 78 ha) has been observed in the overall woodland patch area between the two reporting periods with most change occurring in the 50 to 100 hectare woodland patch size class range.

Table 10 Woodland patches in the Richmond catchment (2008 and 2014)
Woodland Patch Size Range (ha) Woodland* PatchesPatch Change
200820142008 to 2014
Number Area Number Area Number Area 
Count Percent  Ha Percent Count Percent  Ha Percent Count Ha 
Less than 1  6353244645423541-1
1 to 20 50422444150422544210
20 to 50 2243722612-18
50 to 100 4328248322132-1-69
Totals 119100593100119100551100-78
*Includes treed swamps

4.2.2 Woodland (Forest) Interior Habitat

The forest interior is habitat deep within woodlands. It is a sheltered, secluded environment away from the influence of forest edges and open habitats. Some people call it the “core” or the “heart” of a woodland. The presence of forest interior is a good sign of woodland health, and is directly related to the woodland’s size and shape. Large woodlands with round or square outlines have the greatest amount of forest interior. Small, narrow woodlands may have no forest interior conditions at all. Forest interior habitat is a remnant natural environment, reminiscent of the extensive, continuous forests of the past. This increasingly rare forest habitat is now a refuge for certain forest-dependent wildlife; they simply must have it to survive and thrive in a fragmented forest landscape (Conserving the Forest Interior. Ontario Extension Notes, 2000).

The Natural Heritage Reference Manual states that woodland interior habitat is usually defined as habitat more than 100 metres from the edge of the woodland and provides for relative seclusion from outside influences along with a moister, more sheltered and productive forest habitat for certain area sensitive species. Woodlands with interior habitat have centres that are more clearly buffered against the edge effects of agricultural activities or more harmful urban activities than those without.

In the Richmond catchment (in 2014), the 119 woodland patches contain 15 forest interior patches (Figure 64) that occupy two percent (55 ha.) of the catchment land area (which is less than the three percent of interior forest in the Jock River Subwatershed). This is below the ten percent figure referred to in the Environment Canada Guideline that is considered to be the minimum threshold for supporting edge intolerant bird species and other forest dwelling species in the landscape.

Most patches (13) have less than 10 hectares of interior forest, nine of which have small areas of interior forest habitat less than one hectare in size. The remaining two patches contain 18 and 23 hectares of interior forest. Between 2008 and 2014, there has been a change in the number of woodland patches containing smaller areas of interior habitat with an overall loss of seven hectares in the catchment (Table11), suggesting an increase in forest fragmentation over the six year period.

Table 11 Woodland interior in the Richmond catchment (2008 and 2014)
Woodland Interior Habitat Size Range (ha)Woodland InteriorInterior Change
200820142008 to 2014
NumberAreaNumberAreaNumberArea
CountPercentHaPercentCountPercent HaPercentCountHa
Less than 1 436129604753
1 to 1054517274271018-1-7
10 to 3021844712134175-3
Totals111006210015100551004-7

4.3 Wetland Cover

Wetlands are habitats forming the interface between aquatic and terrestrial systems. They are among the most productive and biologically diverse habitats on the planet. By the 1980s, according to the Natural Heritage Reference Manual, 68 percent of the original wetlands south of the Precambrian Shield in Ontario had been lost through encroachment, land clearance, drainage and filling.

Wetlands perform a number of important ecological and hydrological functions and provide an array of social and economic benefits that society values. Maintaining wetland cover in a watershed provides many ecological, economic, hydrological and social benefits that are listed in the Reference Manual and which may include:

  • contributing to the stabilization of shorelines and to the reduction of erosion damage through the mitigation of water flow and soil binding by plant roots
  • mitigating surface water flow by storing water during periods of peak flow (such as spring snowmelt and heavy rainfall events) and releasing water during periods of low flow (this mitigation of water flow also contributes to a reduction of flood damage)
  • contributing to an improved water quality through the trapping of sediments, the removal and/or retention of excess nutrients, the immobilization and/or degradation of contaminants and the removal of bacteria
  • providing renewable harvesting of timber, fuel wood, fish, wildlife and wild rice
  • contributing to a stable, long-term water supply in areas of groundwater recharge and discharge
  • providing a high diversity of habitats that support a wide variety of plants and animals
  • acting as “carbon sinks” making a significant contribution to carbon storage
  • providing opportunities for recreation, education, research and tourism

Historically, the overall wetland coverage within the Great Lakes basin exceeded 10 percent, but there was significant variability among watersheds and jurisdictions, as stated in the Environment Canada Guideline. In the Rideau Valley Watershed, it has been estimated that pre-settlement wetland cover averaged 35 percent using information provided by Ducks Unlimited Canada (2010) versus the 21 percent of wetland cover existing in 2014 derived from DRAPE imagery analysis.

Using the same dataset, it is estimated that pre-settlement (historic) wetland cover averaged 51 percent in the Jock River subwatershed versus the 24 percent of cover existing in 2014 (as summarized in Table 12).

Table 12 Wetland cover in the Jock River subwatershed and Richmond catchment (Historic to 2014)
Wetland Cover Pre-settlement20082014Change - Historic to 2014
Area  Area  Area  Area  
Ha Percent Ha Percent Ha Percent Ha Percent 
Richmond1842594891647615-1366-74
Jock River285275113282241323024-15297-54
Rideau Valley13411535------8207621-52039-39

 

This decline in wetland cover is also evident in the Richmond catchment (as seen in Figure 65) where wetland was reported to cover 59 percent of the area prior to settlement, as compared to 15 percent in 2014. This represents a 74 percent loss of historic wetland cover and what remains (in 2014) falls below the 40 percent historic wetland threshold cited in the Environment Canada Guideline for maintaining key ecological and hydrological functions. To maintain critical hydrological, ecological functions along with related recreational and economic benefits provided by these wetland habitats in the catchment, the Guideline recommends a “no net loss” approach for currently existing wetlands combined with efforts to work towards restoring upwards of 40 percent of the historic wetland coverage, where feasible.

Figure xx Richmond catchment wetland coverWetlandChangeJock-River---Richmond-001-001
Figure 65 Richmond catchment wetland cover
 

4.4 Shoreline Cover

The riparian or shoreline zone is that special area where the land meets the water. Well-vegetated shorelines are critically important in protecting water quality and creating healthy aquatic habitats, lakes and rivers. Natural shorelines intercept sediments and contaminants that could impact water quality conditions and harm fish habitat in streams. Well established buffers protect the banks against erosion, improve habitat for fish by shading and cooling the water and provide protection for birds and other wildlife that feed and rear young near water. A recommended target (from the Environment Canada Guideline) is to maintain a minimum 30 metre wide vegetated buffer along at least 75 percent of the length of both sides of rivers, creeks and streams.

Figure 66 shows the extent of the ‘Natural’ vegetated riparian zone (predominantly wetland/woodland features) and ‘Other’ anthropogenic cover (crop/pastureland, roads/railways, settlements) along a 30-metre-wide area of land, both sides of the shoreline of the Jock River and its tributaries in the Richmond catchment.

Figure xx Natural and other riparian land cover in the Richmond catchment
Figure 66 Natural and other riparian land cover in the Richmond catchment

This analysis shows that the riparian zone in the Richmond catchment in 2014 was comprised of crop and pastureland (39 percent), wetland (20 percent), woodland (20 percent), settlement (nine percent), transportation (seven percent) and meadow-thicket (five percent). Additional statistics for the Richmond catchment are presented in Table 13 and show that there has been very little change in shoreline cover from 2008 to 2014.

 
Table 13 Riparian land cover (2008 vs. 2014) in the Richmond catchment
Riparian Land Cover20082014Change - 2008 to 2014
AreaAreaArea
Ha.Percent Ha.PercentHa.Percent
Crop & Pasture137381403931
Wetland72207220
> Unevaluated(36)(10)(36)(10)(0)(0)
> Evaluated(36)(10)(36)(10)(0)(0)
Woodland70206920-1
Settlement329319-1
Transportation257257
Meadow-Thicket206195-1-1

5.0 Jock River-Richmond Catchment: Stewardship and Water Resources Protection

The RVCA and its partners are working to protect and enhance environmental conditions in the Jock River Subwatershed. Figure 67 shows the location of all stewardship projects completed in the Jock River-Richmond catchment along with sites identified for potential shoreline restoration.

5.1 Rural Clean Water Projects

From 2010 to 2015, one well decommissioning, one well upgrade, one septic system replacement and one milkhouse wastewater treatment facility were completed. Between 2004 and 2009, 16 well upgrades, one septic system replacement, one precision farming and one manure storage/wastewater runoff project were finished and prior to 2004, two septic system replacement and two precision farming projects were completed. Two of these projects were completed within the 30 metre riparian zone of the Jock River. Total value of all 27 projects is $327,897 with $36,814 of that amount funded through grant dollars from the RVCA.

Figure xx Stewardship and potential restoration locations
Figure 67 Stewardship site locations  

5.2 Private Land Forestry Projects

The location of RVCA tree planting projects is shown in Figure 67. From 2010 to 2015, 5,007 trees were planted at one site. Between 2004 and 2009, 7,300 trees were planted at four sites and prior to 2004, 58,900 trees were planted at nine sites, In total, 71,207 trees were planted resulting in the reforestation of 36 hectares. One of these projects was completed within the 30 metre riparian zone of the Jock River. Total project value of all 14 projects is $224,332 with $60,895 of that amount coming from fundraising sources.

Through the RVCA Butternut Recovery Program, an additional 50 butternut trees were planted in the Richmond catchment (Figure 67) between 2004 and 2015, as part of efforts to introduce healthy seedlings from tolerant butternuts into various locations across Eastern Ontario.

5.3 Shoreline Naturalization Projects

With the assistance of the RVCA’s Shoreline Naturalization Program, 1954 trees and shrubs were planted to create an overall 1,372 metre long shoreline buffer at a total project value of $22,818.

5.4 Ontario Drinking Water Stewardship Projects

Figure 67 shows the location of all Ontario Drinking Water Stewardship Program (ODWSP) projects in the Jock River-Richmond catchment. From 2010 to 2015, 11 well upgrades, three septic decommissionings, three sewer line connections, two fuel handling and storage facilities, one well decommissioning and one septic system repair/replacement were completed. Between 2004 and 2009, 6 well upgrades were carried out. Total value of all 27 projects is $73,144 with $45,934 of that amount funded by the Ontario Ministry of the Environment.

5.5 Wetland Restoration Project

The RVCA in partnership with Fisheries and Oceans Canada, Shell Fuelling Change, Muskies Canada Ottawa Chapter, National Defence Fish and Game Club, Community Foundation of Ottawa, Fendock and the Ottawa Flyfishers Society constructed a fish habitat embayment at the Richmond Conservation Area in October 2014. The project involved converting an existing grassed park area into a small wetland embayment along the shoreline of the Jock River and created 1000 square metres of new spawning, nursery, rearing, and feeding habitat to support the 40 species of fish that reside in the Jock River. It also resulted in approximately 100 metres of new shoreline being created by re-grading the existing slope and planting a shoreline buffer around the perimeter of the new embayment feature. Many volunteers participated in the construction of the embayment and contributed 294 volunteer hours towards the project. Post monitoring results have shown that the feature is meeting its objectives by providing enhanced fish habitat and amphibian breeding habitat.

Jock River Wetland Embayment
Jock River Wetland Embayment summer condition
Jock River Wetland Embayment winter condition
Jock River Wetland Embayment winter condition

5.6 Valley, Stream, Wetland and Hazard Lands

The Richmond catchment covers 31 square kilometres with 9.1 square kilometres (or 29 percent) of the drainage area being within the regulation limit of Ontario Regulation 174/06 (Figure 68), giving protection to wetland areas and river or stream valleys that are affected by flooding and erosion hazards.

Wetlands occupy 4.8 sq. km. (or 15 percent) of the catchment. Of these wetlands, 2.9 sq. km (or 60 percent) are designated as provincially significant and included within the RVCA regulation limit. This leaves the remaining 1.9 sq. km (or 40 percent) of wetlands in the catchment outside the regulated area limit.

Of the 60.4 kilometres of stream in the catchment, regulation limit mapping has been plotted along 32.1 kilometers of streams (representing 53 percent of all streams in the catchment). Some of these regulated watercourses (6.1 km or 10 percent of all streams) flow through regulated wetlands; the remaining 26.0 km (or 81 percent) of regulated streams are located outside of those wetlands. Plotting of the regulation limit on the remaining 28.3 km (or 47 percent) of streams

Within those areas of the Richmond catchment subject to the regulation (limit), efforts (have been made and) continue through RVCA planning and regulations input and review to manage the impact of development (and other land management practices) in areas where “natural hazards” are associated with rivers, streams, valley lands and wetlands. For areas beyond the regulation limit, protection of the catchment’s watercourses is only provided through the “alteration to waterways” provision of the regulation.

Within those areas of the Richmond catchment subject to the RVCA regulation (limit), efforts (have been made and) continue through RVCA planning and regulations input and review to manage the impact of development (and other land management practices) in areas where “natural hazards” are associated with rivers, streams, valley lands and wetlands. Additionally, in the urbanizing areas of the Richmond catchment, significant effort is made through land use planning and development control processes and carefully planned stormwater management systems, initially guided by master drainage planning and integrated subwatershed planning, to meet the natural heritage and natural hazards policies presented in the City of Ottawa Official Plan. Also, within areas beyond the regulation limit, protection of the catchment’s watercourses is provided through the “alteration to waterways” provision of the regulation.

Figure xx RVCA regulation limits
Figure 68 RVCA regulation limits

5.7 Vulnerable Drinking Water Areas

The Wellhead Protection Area around the Richmond (King’s Park) drinking water source is located within the Jock River-Richmond drainage catchment. This area is subject to mandatory policies in the Mississippi-Rideau Source Protection Plan developed under the Clean Water Act. These policies specifically regulate land uses and activities that are considered drinking water threats, thereby reducing the risk of contamination of the municipal drinking water source.

The Jock River-Richmond drainage catchment is also considered to have a Highly Vulnerable Aquifer. This means that the nature of the overburden (thin soils, fractured bedrock) does not provide a high level of protection for the underlying groundwater making the aquifer more vulnerable to contaminants released on the surface. The Mississippi-Rideau Source Protection Plan includes policies that focus on the protection of groundwater region-wide due to the fact that most of the region, which encompasses the Mississippi and Rideau watersheds, is considered Highly Vulnerable Aquifer.

For detailed maps and policies that have been developed to protect drinking water sources, please go to the Mississippi-Rideau Source Protection Region website at www.mrsourcewater.ca to view the Mississippi-Rideau Source Protection Plan.

6.0 Jock River-Richmond Catchment: Challenges/Issues

Water Quality/Quantity

Surface chemistry water quality in the Jock River within the Jock River-Richmond catchment is “Fair” over two reporting periods (2004-2009 and 2010-2015). The score at this site reflects few exceedances across measured parameters with occasional instances of elevated nutrients and bacterial counts

Instream biological water quality conditions at the Jock River Richmond sample location range from “ Poor” to “Fair” from 2004 to 2015 (using a grading scheme developed by Ontario Conservation Authorities in Ontario for benthic invertebrates) with an overall benthic invertebrate water quality rating of “Fairly Poor” determined for this period

Effect of the Richmond sewage lagoons on Jock River surface water quality conditions needs to be understood

Effect of climate change on the hydrologic function (water budget) of the Jock River subwatershed and associated natural hazards (flood risk) posed to the built/urban areas of the Village of Richmond are not understood, including the flood risk associated with proposed subdivision development on the west side of Richmond that remains unresolved

Existing hydrological and geochemical datasets and assessments (academic, RVCA, others) are only recently available and/or are not being considered in the characterization of the numerous hydrologic functions of the Jock River subwatershed. Further, there is a dearth of hydrologic information (hydroperiod, groundwater/surface water interactions, geochemistry) about the wetlands that remain in the Jock River subwatershed

Headwaters/Instream/Shorelines

‘Natural’ vegetation covers 45 percent of the riparian zone of the Jock River and its tributaries (Figure 66) and is below the recommended 30 metre wide, naturally vegetated target along 75 percent of the length of the catchment’s watercourses

Richmond weir is a seasonal impediment to fish movement along the Jock River and can fragment/ isolate fish populations

Land Cover

Woodlands cover 17 percent of the catchment and is less than the 30 percent of forest cover that is identified as the minimum threshold for sustaining forest birds and other woodland dependent species (Figure 64)

Pre-settlement wetlands have declined by 74 percent and now cover 15 percent (476 ha.) of the catchment (Figure 65). Forty percent (191 ha.) of these wetlands remain unevaluated/unregulated and are vulnerable to drainage and land clearing activities in the absence of any regulatory and planning controls that would otherwise protect them for the many important hydrological, social, biological and ecological functions/services/values they provide to landowners and the surrounding community

7.0 Jock River-Richmond Catchment: Opportunities/Actions

Water Quality/Quantity

Reduce total phosphorus and E. coli levels via non-point and point source pollution control both in rural areas as well as the developed portion of Richmond 

Consider the incorporation of low impact development features within Richmond to assist in storm water management

Private landowners should consider taking advantage of The Rural Clean Water Programs which offer grants to landowners interested in implementing projects on their property that will help to protect and improve water quality.

  • Homeowners may be interested in projects to repair, replace or upgrade their well or septic system, or addressing erosion through buffer plantings and erosion control
  • Farmers can take advantage of a wide range of projects, including livestock fencing, manure storage, tile drainage control structures, cover crops, and many more

Consider a second monitoring site in the downstream portion of the catchment (where Eagleson Road crosses the Jock River) to capture any surface water quality impacts from the Village of Richmond as well as any potential impact of emergency overflow from the former Richmond sewage lagoon

Continue to coordinate environmental monitoring and reporting activities with the City of Ottawa

Use wetland restoration as a tool to improve surface water quality and help restore the hydrologic integrity of the Jock River and its tributaries

List, share and when possible, synthesize and use existing hydrological and geochemical datasets and assessment outcomes to facilitate the characterization of subwatershed and catchment hydrological functions. In addition, prepare guidance on best practices for the preparation of water budget assessments to better understand the hydrologic cycle requirements that occur at site specific scales; and share existing catchment and subwatershed scale water budget assessment outcomes

Headwaters/Instream/Shorelines

Promote the Rideau Valley Shoreline Naturalization Program to landowners to increase existing 45 percent of natural shoreline cover

Educate landowners about the value of and best management practices used to maintain and enhance natural shorelines and headwater drainage features

Work with the City of Ottawa to consistently implement current land use planning and development policies for water quality and shoreline protection (i.e., adherence to a minimum 30 metre development setback from water) adjacent to the Jock River and other catchment streams

Target shoreline restoration at sites identified in this report (shown as “Other riparian land cover” in Figure 66 and “Potential Riparian/Instream Restoration” in Figures 53/54) and explore other restoration and enhancement opportunities along the Jock River and its tributaries

Land Cover

Promote the City of Ottawa’s Green Acres Reforestation Program to landowners to increase existing 17 percent of woodland cover

Encourage the City of Ottawa to strengthen natural heritage and water resources policies in official plans and zoning by-laws where shoreline, wetland, woodland cover and watercourse setbacks are determined to be at or below critical ecological thresholds. Information for this purpose is provided in the RVCA’s subwatershed and catchment reports

Explore ways and means to more effectively enforce and implement conditions of land-use planning and development approvals to achieve net environmental gains

Re-consider the RVCA’s approach to wetland regulation where there is an identified hydrologic imperative to do so (i.e., significant loss of historic wetland cover (see Figure 65) and/or seasonal, critically low baseflows in the Jock River and/or areas of seasonal flooding)

Full Catchment Report